
Multi-layered Architectures in .Net

Kristijan Horvat
Software Architect
kristijan@mono-software.com

Table of Contents

Multi-layered architectures
• Layered

• DIP and Dependency Injection Role

• Onion

• Hexagon Onion

• Differences

Practices
• Choose appropriate architecture

• Layers Demystified and Component placement

• Naming conventions

• SRP "all the way" (Single Responsibility Principle)

• Security handling

• Caching through layers

• Exception handling

• Package handling

• Do not go overboard

What is multi-layered architecture ?

A multi-layered software architecture is a software
architecture that uses many layers for allocating the
different responsibilities of a software product.

Wikipedia

Advantages and disadvantages

Advantages
• Increases flexibility, maintainability, and scalability
• Multiple applications can reuse the components
• Enables teams to work on different parts of the application
• Enables develop loosely coupled systems
• Different components of the application can be independently deployed and maintained
• Helps you to test the components independently of each other

Disadvantages
• Longer implementation period
• Possible negative impact on the performance
• Tends to become very complex
• Adds unnecessary complexity to simple applications

Layer or Tier ? What's the difference ?

Layers are logical separation

• Logical layers are merely a way of organizing your code. Typical layers include
Presentation, Business and Data

Tiers are physical separation

• Defines a place where the code runs. Specifically, tiers are places where layers are
deployed and where layers run. In other words, tiers are the physical deployment of
layers.

Layered, Onion & Hexagonal architectures

Layered

• An architecture in which data moves from one defined level of processing to another

Onion

• An architecture that has layers defined from core to Infrastructure and code can depend
on layers more central, but code cannot depend on layers further out from the core.

Hexagonal

• Hexagonal Architecture is an architecture defined by establishing a perimeter around the
domain of your application and establishing adapters for input/output interactions. By
establishing this isolation layer, the application becomes unaware of the nature of the
things it's interacting with.

Layered architecture

Layered architecture is an architecture in which data moves
from one defined level of processing to another

Layered - Involved Layers

• Presentation layer
Also know as Front-End UI

Platforms - Mobile, Desktop, Web, etc.

Technologies - HTML5/JavaScript, MVC, WebForms, WPF, etc.

• Domain Layer
Also know as Business Layer, BLL, Service Layer

Contains business logic and entities

• Data Access Layer
Also know as DAL, Data Layer

Contains database models or entities

Layered architecture - main diagram

Presentation Layer

Domain Layer

Data Access Layer - DAL

Layered architecture - complex diagram

Presentation Layer

Desktop WebMobile

Domain Layer

Data Access Layer - DAL

Fo
rm

s

V
ie

w
s

C
o

n
tr

o
lle

rs

Fo
rm

s

V
ie

w
s

C
o

n
tr

o
lle

rs

V
ie

w
s

H
TM

L/
Ja

va
Sc

ri
p

t

M
V

C

C
o

n
tr

o
lle

rs

W
eb

A
P

I
C

o
n

tr
o

lle
rs

Business
Components

Business
Entities

Business
Workflows

W
o

rk
fl

o
w

 1

W
o

rk
fl

o
w

 2

W
o

rk
fl

o
w

 ..
. n

C
o

m
p

o
n

en
t

1

C
o

m
p

o
n

en
t

2

C
o

m
p

o
n

en
t

..
. n

V
ie

w
s

H
TM

L/
Ja

va
Sc

ri
p

t

M
V

C

C
o

n
tr

o
lle

rs

W
eb

A
P

I
C

o
n

tr
o

lle
rs

Data
Utilities

Database
Entities

Data Access
Components

Data Sources and Services

SaaS and BaaS

Layered architecture - layer coupling diagram

Presentation Layer

Desktop WebMobile

Domain Layer

Data Access Layer - DAL

Business
Components

Business
Entities

Business
Workflows

Data
Utilities

Database
Entities

Data Access
Components

Data Sources and Services

SaaS and BaaS

Layered architecture

Advantages

• Increases flexibility to a certain level

• Reuse the components

• Teams can work in parallel

Disadvantages

• Harder to determine appropriate layer for functionality at hand

• Harder to introduce new team members - learning curve

• Tends to expose database models to top layers

DIP, DI & IoC, anybody ?

In order to work with Onion and Hexagonal architectures one should be familiar with the
dependency inversion principle (DIP), dependency injection (DI), inversion of control (IoC)
as they heavily depend on it.

Dependency Injection - DI

 In case where service depends on some other services, dependencies
are injected into target service rather then instantiated inside the
service.

 On of the best practices and most used technique is constructor
injection

 Key features you should know when working with DI

• constructor injection

• factory pattern

• facade services

Inversion of Control - IoC

 Design in which parts of application receive a flow of control from
generic reusable library.

 In practice IoC will come down to substitution of one abstraction with
another, or substitution of one implementation layer with another

 Key features you should know when working with IoC

• decoupling

• increased modularity

• increased extensibility

Dependency Inversion Principle - DIP

 To apply DIP your architecture should follow these simple rules:

• Common classes depend on nothing

• Domain classes depend only on Common classes and each other

• Service classes depend only on Domain classes

• Infrastructure classes depend only on Service and Domain classes

DI has important role in the architecture

• Unit testing made easier

• Architecture layers can be replaced using IoC

• Glue everything together - Onion & Hexagonal

Onion architecture

Onion is an architecture that has layers defined from core to
Infrastructure and code can depend on layers more central, but code
cannot depend on layers further out from the core.

Onion - Involved Layers

• Presentation Layer (Front-End UI)
Platforms - Mobile, Desktop, Web, etc.

Technologies - HTML5/JavaScript, MVC, WebForms, WPF, etc.

• Web Service Layer (REST APIs, SOAP, etc.)

• Domain Layer
Business classes or BLLs, Service classes

• Domain Model Layer

• Infrastructure Layer
Repository layer

Data Access Layer (DAL, Data Layer)

• contains database models or entities

Onion architecture - main diagram

Infrastructure

Domain Layer

Domain
Models

Unit Tests

Services, Cross-Cutting

W
eb

 Services
P

re
se

n
ta

ti
o

n
 L

ay
er

Onion architecture - complex diagram

Domain Layer

Unit Tests, Integration Tests

Infrastructure

W
eb Se

rv
ice

s

(R
EST

 A
PIs,

 W
CF,

 SO
AP)

Presentation Layer

(M
VC, W

ebForm
s, W

PF, HTM
L/JavaScript)

Service
Implementation

Repository
Implementation

Data Entities
Logging

Implementation

Caching
Implementation

Utilities

Service Contracts

Mapping
and

Converters

DI
Configuration

Repository Contracts

Domain
Models

Contracts

Onion architecture - layer coupling diagram

Domain Layer

Unit Tests, Integration Tests

Infrastructure

W
eb Se

rv
ice

s

(R
EST

 A
PIs,

 W
CF,

 SO
AP)

Presentation Layer

(M
VC, W

ebForm
s, W

PF, HTM
L/JavaScript)

Service
Implementation

Repository
Implementation

Data Entities
Logging

Implementation

Caching
Implementation

Utilities

Service Contracts

Mapping
and

Converters

DI
Configuration

Repository Contracts

Domain
Models

Contracts

Onion vs Layered architecture

Onion
• Domain model is in the middle of the

architecture
• Outer layers can communicate only with

inner layers
• Layers can communicate with multiple

inner layers
• More complex
• Requires many elements to be

abstracted
• Heavily depends on DIP (DIP/DI/IoC)
• Easily decoupled

Layered
Database models are at the bottom of
the architecture
Layers can communicate only with layers
one level beneath
Less complex
Only parts of application needs to be
abstracted
Uses DI and IoC where needed
Easy/Hard to decouple

Onion architecture

Advantages
• Increases flexibility, maintainability, and scalability
• Multiple applications can reuse the components
• Enables teams to work on different parts of the application
• Enables develop loosely coupled systems
• Different components of the application can be independently deployed and maintained
• Helps you to test the components independently of each other

Disadvantages
• Longer implementation period
• Easier, than in layered architecture, to introduce new team members learning curve
• Possible negative impact on the performance
• Tends to become very complex
• Adds unnecessary complexity to simple applications

Hexagonal architecture

Hexagonal Architecture is an architecture defined by
establishing a perimeter around the domain of your
application and establishing adapters for input/output
interactions. By establishing this isolation layer, the
application becomes unaware of the nature of the things
it's interacting with.

Also know as Ports and Adapters

Hexagonal Onion architecture

Hexagonal architecture only addresses how external
dependencies connect with the application, while
Hexagonal Onion applies Onion structuring and
Hexagonal principles of establishing isolation layer towards
outside world.

Hexagonal Onion - Involved Layers

Almost same layers as Onion but different coupling

• Ports and Adapters
Web Services (REST APIs, SOAP, Message Bus, etc.)

• Domain Layer
Business Layer, BLL, Service Layer

• Domain Models

• Infrastructure Layer
• Repository Layer

• Data Access Layer (DAL, Data Layer)

Hexagonal architecture - main diagram

Adapters
Infrastructure Ports

(E-mail, Notifications
Clients)

Presentation Ports
(MVC, WebForms,

WPF, HTML/
JavaScript)

Database Ports

 Web Services Ports
(REST, WCF, SOAP

Clients)

Domain Layer

Ports

 W
eb

 S
er

vi
ce

s
A

da
pt

er

(R
ES

T
A

PI
s,

 W
CF

, S
O

A
P)

Presentation Ports

(M
VC, W

ebForm
s, W

PF, H
TM

L/

JavaScript)

D
atabase A

dapterIn
fr

as
tr

uc
tu

re
 A

da
pt

er
s

(E
-m

ai
l,

N
ot

ifi
ca

tio
ns

)

Hexagonal architecture - complex diagram

Adapters

Unit Tests, Integration
Tests

Infrastructure

W
eb

 S
er

vi
ce

s

(R
ES

T
A

PI
s,

 W
CF

, S
O

A
P)

Service
Implementation

Repository
Implementation

Data Entities
Logging

Implementation

Caching
Implementation

Utilities

Domain Layer

Mapping
and

Converters

DI
Configuration

Infrastructure Ports
(E-mail, Notifications

Clients)

Presentation Ports
(MVC, WebForms,

WPF, HTML/
JavaScript)

Database Ports

 Web Services Ports
(REST, WCF, SOAP

Clients)

Presentation Layer

(M
VC, W

ebForm
s, W

PF, H
TM

L/JavaScript)

In
fr

as
tr

uc
tu

re
 A

da
pt

er
s

(E
-m

ai
l,

N
ot

ifi
ca

tio
ns

)

 W
eb

 S
er

vi
ce

s
A

da
pt

er

(R
ES

T
A

PI
s,

 W
CF

, S
O

A
P)

Presentation Ports

(M
VC, W

ebForm
s, W

PF, H
TM

L/

JavaScript)

D
atabase A

dapter

Hexagonal architecture - layer coupling diagram

Adapters

Unit Tests, Integration
Tests

Infrastructure

W
eb

 S
er

vi
ce

s

(R
ES

T
A

PI
s,

 W
CF

, S
O

A
P)

Service
Implementation

Repository
Implementation

Data Entities
Logging

Implementation

Caching
Implementation

Utilities

Domain Layer

Mapping
and

Converters

DI
Configuration

Infrastructure Ports
(E-mail, Notifications

Clients)

Presentation Ports
(MVC, WebForms,

WPF, HTML/
JavaScript)

Database Ports

 Web Services Ports
(REST, WCF, SOAP

Clients)

Presentation Layer

(M
VC, W

ebForm
s, W

PF, H
TM

L/JavaScript)

In
fr

as
tr

uc
tu

re
 A

da
pt

er
s

(E
-m

ai
l,

N
ot

ifi
ca

tio
ns

)

 W
eb

 S
er

vi
ce

s
A

da
pt

er

(R
ES

T
A

PI
s,

 W
CF

, S
O

A
P)

Presentation Ports

(M
VC, W

ebForm
s, W

PF, H
TM

L/JavaScript)

D
atabase A

dapter

Onion vs Hexagonal Onion architecture

Onion

• Domain model is in the middle of the architecture

• Outer layers can communicate only with inner layers

• Same complexity

• Requires same level of abstraction

• Heavily depends on DIP (DIP/DI/IoC)

• Easily decoupled

• Layers can communicate with multiple inner layers

• Infrastructure layers can communicate with each other

Hexagonal Onion

Domain model is in the middle of the architecture

Outer layers can communicate only with inner layers

Same complexity

Requires same level of abstraction

Heavily depends on DIP (DIP/DI/IoC)

Easily decoupled

Layers can communicate only with immediate neighbor
layer

Ensure domain logic is not bypassed in infrastructure
layer

Ensure infrastructure components are not coupled
together

Hexagonal doesn't address how the application is
structured. It only addresses how external dependencies
connect with the application.

Hexagonal Onion architecture

Advantages
• Same advantages as Onion and
• Multiple applications and services can reuse the components
• Teams can develop stand alone services
• Truly loosely coupled systems

Domain logic is not bypassed in infrastructure layer

Infrastructure components are not coupled together

Disadvantages
• Same disadvantages as Onion
• Tends to become even more complex than Onion

Architecture in Practices

Common challenges when designing architecture

• Choose appropriate architecture for your project

• Layers Demystified and Component placement

• Naming conventions
• SRP "all the way" (Single Responsibility Principle)

• Security handling

• Caching through layers

• Exception handling

• Package handling

• Do not go overboard

Choose Appropriate Architecture

• Layered
Small projects

Small teams

Slow evolving projects

• Onion
Mid to Large projects

Large teams

Fast evolving projects

• Hexagonal Onion
Mid to Large projects

SaaS/BaaS solutions

Large, Decentralized teams

Fast evolving projects

Common - Architecture layers demystified

• Utility classes
Converters, Helpers

• Cross-Cutting abstractions

• Data structures

• Custom exceptions

• Cross-Cutting Attributes

• Event arguments

• Parameters

Present in almost all projects, any layer can depend on common

Domain - Architecture layers demystified

• Business domain classes

Model Contracts/Abstractions

• Business domain logic

Services (BLLs) contracts

Business Validation

Lookups contracts

Membership contracts

ACL (Access Control List) Services

• Can use cross-cutting abstractions
Logging (ILogger)

Caching (ICacheProvider)

Mapping (IMapper)

• Exposes operations needed by upper
layers

In Layered arch. - WebAPI, MVC, etc.

In Onion arch. - WebAPI, MVC, etc.

In Hexagonal arch. - Ports and Adapters

Depends only on other domain classes and common classes

Infrastructure - Architecture layers demystified

• Contains components that connect
domain and services to outside
world

Controllers, MBus, Database, etc.
In Hexagonal they are called Ports and
Adapters

• Contains layer implementations and
sub-components

I/O components
ASP.NET WebAPI or MVC
Repositories
Domain models - implementation
Dependency Injection configuration

Can depend on any component as required

• Services used to interact with
domain layer

• Validation

REST model validation

ViewModel validation

• Security

Authentication

Authorization

Naming Conventions Domain Layer

• Project.Models.Common
Domain Model Contracts
IUser, IUserModel

• Project.Repository.Common
Repository contracts - specialized contracts used for data access operations
IUserRepository, ICompanyRepository

• Project.Service.Common
Service contracts - business logic contracts
IUserService, ICompanyService, IUserBLL

Naming Conventions Infrastructure Layer

• Project.Web

HTML/JavaScript, MVC, WebForms, etc.

DI Configuration

• Project.REST or WebService

WebAPI, SOAP, etc.

DI Configuration

• Project.Service

Service/BLL implementations

• Project.Repository

Repository implementations

• Project.DAL

Database entities

UserEntity, CompanyEntity

• Project.Common

Utilities, Mapping, Converter

• Cross-Cutting Components

Caching, Logging, etc.

SRP "all the way" (Single Responsibility Principle)

It is important to follow the SRP principle in all elements of
application design. You should be carefully when deciding
responsibility of:

• layers

• contracts and classes

• cross-cutting libraries

Security Handling

There are few approaches when handling security, handling in
Infrastructure layer (WebAPI, MVC) or in Domain layer (Business
classes)

• Authentication in Infrastructure layer (WebAPI, MVC)
faster, but not reusable

• Authentication in Domain layer (Business classes)
reusable, slower

• Authorization in Infrastructure layer (WebAPI, MVC)
can be fast, not reusable, business rules can be violated

• Authorization in Domain layer (Business classes)
slower, reusable, business rules are not violated

Caching through layers

Data caching

• mostly used in domain layer

• boost performance

• offload database servers

Output caching

• used in infrastructure layer

• MVC, WebForms, WebAPI

• boost performance

• offload web servers

Keep in mind

Caching invalidation is very
complex

Distributed cache may be
introduced

• Redis, Azure In-Role,
CouchBase, MemCache, etc.

Data and output caching are just some of caching mechanisms you can use.

Exception handling

There are many debates online on how and where to handle
exceptions.

How do you od it ?

• Throw exception in domain layer, catch exception in infrastructure layer

• Infrastructure layer catch all approach

• or

Package handling

When dealing with large projects it is important to decouple everything.
Decoupling services, tools and cross-cutting functionality will bring a large
number of smaller libraries that you need to maintain. In order to do it
successfully one should use package managers like NuGet.

Package handling

Common pitfalls

• Large number of libraries

• Naming issues

• Version mismatch

• Dependency issues

How to avoid them

• Follow the SRP practice and you
will handle large number of
libraries with ease

• Try to categorize your package
names

Solution.Project.Functionality.Name

• Properly define the dependency
package version

• Use developmentDependency if
needed

Readings

Architectural Patterns and Styles
https://msdn.microsoft.com/en-us/library/ee658117.aspx

Layered Application Guidelines
https://msdn.microsoft.com/en-us/library/ee658109.aspx

The Onion Architecture
http://jeffreypalermo.com/blog/the-onion-architecture-part-1/

Hexagonal architecture
http://alistair.cockburn.us/Hexagonal+architecture

The Clean Architecture
http://blog.8thlight.com/uncle-bob/2012/08/13/the-clean-architecture.html

Layers, Onions, Ports, Adapters: it's all the same
http://blog.ploeh.dk/2013/12/03/layers-onions-ports-adapters-its-all-the-same/

Onion-izing your multi tier architecture
http://www.incredible-web.com/blog/the-onion-architecture/

Next Mono.Tracks on CodeCamp

13.11. - Multi-layered Architectures - Workshop

16.12. - NodeJS Introduction & Workshop

We are hiring

Facebook: mono.software

Twitter: @monosoftware

E-mail: careers@mono.software

Thank you!

Questions?

